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Abstract. Analytical derivations are given for the wave function of the quasi-hole excitation
and for the relation between the filling factors of fermions and composite fermions. The extra
terms which are added to the Hamiltonian of noninteracting electrons due to the presence of the
composite-fermion vector potential are also investigated.

1. Introduction

In the last two decades, considerable effort has been devoted to establishing the theoretical
foundation for the fractional quantum Hall effect (FQHE). In spite of this, the explanation of
this strange phenomenon still needs further investigation and is subject to speculation. The
present work is an attempt in this direction and its motivation is twofold. First, we introduce
a new method for the derivation of the quasi-hole wave function. This wave function was
originally introduced by Laughlin [1, 2]. It was chosen according to a physical argument
which depends on the adiabatic addition of a flux quantum through an infinitely thin solenoid.
In the present method, the fictitious-particles approach of Jain [3] is utilized and a Hilbert space
for the wave functions of the particles in a certain species is defined. The Hilbert space used
in the calculations resembles the one used in Girvin [4] for the wave function of the electrons
in the lowest Landau level. The present approach has the advantage that it gives a general
mathematical derivation for the wave function of a quasi-hole created at any point z0 with a
fractional charge e/m. This has not been performed before, as is clarified in section 2.

The second motivation for the work is to explore the explicit forms of the terms which
arise due to the vector potential added in the theory of composite fermions (Jain [5]). The aim
of such study is to predict the interaction that is responsible for the composite fermionization of
the electrons, i.e. that causes the attachment of flux quanta to the electrons. The most important
term was found to be of the form 1/r2 and not of the form 1/r . The latter is the potential
which should be expected due to Coulomb interactions between the electrons. We have further
introduced an analogous vector potential for a single electron and presented a new approach
that gave an adequate mathematical justification for Jain’s relation between the filling factors
of fermions and composite fermions.

The new derivation for the quasi-hole wave function is given in section 2. The investigation
of the composite-fermion additional vector potential is considered in section 3.
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2. A new approach for creating quasi-holes

Laughlin [1, 2] suggested the following form of the quasi-hole wave function:

�hz0
m =

N∏
i

(zi − z0)
∏
j<k

(zj − zk)
m exp

(
−1

4

∑
�

|z�|2
)

(1)

whereN is the number of electrons, zj = xj − iyj and z0 is the position at which the quasi-hole
has been created. He based his assumption on a physical point of view. Girvin [4] presented
a method which gave a rigorous justification for this form when m = 1, i.e. in the simple
case of the creation of a true hole. He further showed that the creation of m quasi-holes is
locally equivalent to the creation of a true hole. Jain [3] used the fictitious-particles approach
to derive the wave function of a quasi-hole created at the origin z0 = 0 (the centre of a disc
geometry). In the present section we combine the Girvin [4] and Jain [3] approaches to find a
general proof for the above form of wave function. To the best of our knowledge this has not
been done before. In the fictitious-particles approach, each electron is divided artificially into
m distinct species (labelled by λ = 1, 2, . . . , m). The Laughlin state is characterized by

νλ = 1 eλ = e/m (2)

and

xλ = φ1[z(λ)j ] exp

[
−1

4

eλ

e

∑
�

|z(λ)� |2
]

λ = 1, 2, . . . , m (3)

where

φ1[z(λ)j ] =
∏
j<k

(z
(λ)
j − z

(λ)
k ). (4)

νλ, eλ and xλ are the filling factor, the charge and the wave function of the fictitious particles
of the species λ. Consequently, the electron wave function is given by the Laughlin wave
function:

ψm =
m∏
λ

xλ =
∏
j<k

(zj − zk)
m exp

[
−1

4

∑
�

|z�|2
]
. (5)

For a certain species λ̃, we define a Hilbert space analogous to the one defined in Girvin
[4]. We thus include the exponential factor in equation (3) in the measure dµ and define the
Hilbert space of functions analytic in z(λ̃) via the inner product

〈θ, φ〉 =
∫

dµ(z(λ̃)) θ∗(z(λ̃))φ(z(λ̃)) (6)

where

dµ(z(λ̃)) = e2
λ̃

e2

1

2π�2
0

exp

[
−1

2

eλ̃

e
|z(λ̃)|2

]
d2z(λ̃) = 1

2π�2
0λ̃

exp

[
−1

2
|z̃(λ̃)|2

]
d2z̃(λ̃) (7)

�0λ̃ =
(
h̄c

eλ̃B

)1/2

=
(
e

eλ̃

)1/2

�0 �0 =
(
h̄c

eB

)1/2

(8)

and

z̃(λ̃) =
(
eλ̃

e

)1/2

z(λ̃) =
(
�0

�0λ̃

)
z(λ̃). (9)

z(λ̃) measures the coordinates in units of the magnetic length �0 whereas z̃(λ̃) measures the
coordinates in units of �0λ̃. Also, the definition of the Hilbert space in equations (6)–(9) has
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been made for a general fictitious-particle state and not particularly a Laughlin state. For a
Laughlin state we can further take eλ/e = 1/m as given in equation (2).

Now, we follow Girvin [4] and introduce the coherent state

φz0(z
(λ̃)) = exp

[
eλ̃

2e
z∗

0z
(λ̃)

]
(10)

which represents a Gaussian wave packet centred at the point z0 (measured in units of �0).
It also gives the projection on the lowest Landau level. A localized quasi-hole can thus be
injected into a Laughlin state of fictitious particles by utilizing the coherent state (10). In this
respect, we note from equations (3), (4) that the wave function representing N + 1 fictitious
particles of the species λ̃ in a Laughlin state is given by

φ1(z
(λ̃)
1 , z

(λ̃)
2 , . . . , z

(λ̃)
N+1) =

N+1∏
j<k

(z
(λ̃)
j − z

(λ̃)
k ) (11)

after eliminating the exponential factor. Following a similar approach to that used in Girvin
[4], the wave function which results after the injection of the quasi-hole is given by

θz0(z
(λ̃)
1 , . . . , z

(λ̃)
N ) = 〈φz0(z

(λ̃)
N+1), φ1(z

(λ̃)
1 , . . . , z

(λ̃)
N+1)〉

=
∫

dµ(z(λ̃)N+1) exp

[
eλ̃

2e
z0z

(λ̃)∗
N+1

]
φ1(z

(λ̃)
1 , . . . , z

(λ̃)
N+1). (12)

But, according to the Bargmann identity [6]:∫
dµ(z(λ̃)) exp

[
eλ̃

2e
z0z

(λ̃)∗
]
φ(z(λ̃)) = φ(z0). (13)

Consequently, it can be shown by applying (13) in (12) that

θz0(z
(λ̃)
1 , . . . , z

(λ̃)
N ) = φ1(z

(λ̃)
1 , . . . , z

(λ̃)
N , z0) =

N∏
i=1

(z
(λ̃)
i − z0)φ1(z

(λ̃)
1 , . . . , z

(λ̃)
N ). (14)

Combining (14) with the wave functions of the other species (given by (3), (4)) and imposing
the condition z(λ)j = zj (for all λ and j ) we find

ψhz0
m (z1, . . . , zN) =

N∏
i=1

(zi − z0)
∏
j<k

(zj − zk)
m exp

(
−1

4

∑
�

|z�|2
)

(15)

which represents an electron state with a quasi-hole created at the point z0. It is exactly identical
to the form suggested by Laughlin (equation (1)).

3. The vector potential of composite fermions

In the composite-fermion approach (Jain [5]) the following vector potential:

Aj = 2m′ φ0

2π

∑
k,k 	=j

∇j θjk (16)

was added to the symmetric gauge vector potential

Aj = 1

2
B(yje1 − xj e2) (17)

in order to attach to each electron 2m′ flux quanta. In equation (17) e1 and e2 are unit vectors
along the x- and y-axes while in equation (16) φ0 is the unit of flux quanta hc/e and θjk is the
angle subtended by the vector connecting the particles j and k with the x-axis. Accordingly

θjk = tan−1 yj − yk

xj − xk
(18)
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and

Aj = 2m′ φ0

2π

∑
k,k 	=j

1

r2
jk

[−(yj − yk)e1 + (xj − xk)e2]. (19)

We now proceed to investigate the explicit forms of the terms which arise due to the additional
vector potential Aj . For such purposes we first note that the Hamiltonian operator now takes
the form

H = 1

2me

N∑
j=1

(
h̄

i
∇j − e

c
Aj − e

c
Aj

)2

= H0 +
1

2me

∑
j

(
2e2

c2
Aj · Aj +

e2

c2
Aj · Aj +

2ih̄e

c
Aj · ∇j

)
(20)

where

H0 = 1

2me

N∑
j=1

(
h̄

i
∇j − e

c
Aj

)2

is the Hamiltonian of noninteracting electrons (before adding Aj ) and we have used the relation
∇j ·Aj = 0 which follows from (19). It can further be shown after some algebra and by using
(17), (19) that∑
j

Aj · Aj = −m′φ0B

2π

∑
j

∑
k,k 	=j

1

r2
jk

[yj (yj − yk) + xj (xj − xk)] = −m′φ0B

4π
N(N − 1)

(21)

Aj · Aj = m′2φ2
0

π2

{
(N − 1)

∑
k 	=j

1

r2
jk

+
∑
k 	=j

∑
k′ 	=j

(xj − xk′)(xk′ − xk) + (yj − yk′)(yk′ − yk)

r2
jkr

2
jk′

}

(22)

and

Aj · ∇j = m′φ0

π

∑
k,k 	=j

1

r2
jk

[
−(yj − yk)

∂

∂xj
+ (xj − xk)

∂

∂yj

]
. (23)

The terms in equations (21), (22), (23) do not involve any term which may give rise to a Coulomb
interaction between the electrons. The only term which leads to an explicit interaction is the
first term in (22). This term represents a repulsive potential of the form 1/r2. The repulsive
nature of this term is consistent with the proposal usually made in the composite-fermion theory
that attaching flux quanta to electrons can be driven by any convenient repulsive interaction.
The problem ofN particles undergoing 1/r2 interactions in the presence of an external magnetic
field has been considered before in related contexts (Johnson and Quiroga [7]).

The coefficient of the 1/r2 term in equation (22) is given by

α = 1

2me

e2

c2

m′2φ2
0

π2
(N − 1) = 2m′2h̄2

me

(N − 1). (24)

For a single electron attracted to a guiding centre at the origin (Asselmeyer and Keiper [8]) we
may take

α = 2m′2h̄2

me

(25)

in the thermodynamic limit. The Schrödinger equation of a single electron with an interaction
potential α/r2 can be solved exactly to find the corresponding eigenfunctions and eigenvalues.
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To confirm further that the most important term which arises from Aj is of the form 1/r2,
we use the following alternative approach. In the single-electron calculations the form of the
vector potential equivalent to Aj may be taken as

A = 2m′ φ0

2π
∇φ (26)

where φ is the polar angle of the electron position relative to the guiding centre. The single-
electron Hamiltonian operators before (H0) and after (H) adding A are consequently given
by

H0 = −h̄2

2me

[
1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂φ2

]
− ih̄ωc

2

∂

∂φ
+
meω

2
c r

2

8
(27)

and

H = H0 −m′h̄ωc + i
h̄2

me

2m′

r2

∂

∂φ
+
h̄2

me

2m′2

r2
(28)

whereωc is the cyclotron frequency eB/mc. The additional terms in (28) reveal that the vector
potential A still adds in the present approach an interaction potential of the form 1/r2.

Also, the addition of A changes the wave function from ψ0 to ψ , so

ψ = ψ0 exp(2im′φ). (29)

But, ψ0 takes the form

ψ0 = Rnm(r) exp(imφ) (30)

and accordingly

ψ = Rnm(r) exp(i(m + 2m′)φ). (31)

It is important to emphasize that m is the angular momentum quantum number (it determines
the degeneracy of the state) while 2m′ is the number of additional flux quanta attached to each
electron. Furthermore, it is readily shown that

Rnm(r) = r |m| exp

[
− r2

4�2
0

]
Un(r) (32)

where Un(r) is a terminated series with highest power 2n. The eigenvalue corresponding to
both ψ0 and ψ is consequently given by

Enm = h̄ωc

[
n +

|m| + 1

2
+
m

2

]
(33)

wherem = −γ, . . . , 0, . . . forψ0 andm = −(γ + 2m′), . . . , 0, . . . forψ . Here γ is the degree
of degeneracy before adding A. It thus follows that

ν0 = 1

γ
ν = 1

γ + 2m′ = ν0

1 + 2m′ν0
(34)

where ν0, ν are the filling factors before and after adding A. The final result in (34) is identical
to Jain’s relation between the filling factors of composite fermions and fermions [5]. The
present approach thus leads to a simple justification for Jain’s composite-fermion theory.
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4. Conclusions

The method used in section 2 gave a reasonable analytical derivation for the quasi-hole wave
function instead of the physical arguments used in earlier treatments. Moreover, it gives some
support to the theory of fictitious particles. This theory was introduced by Jain in 1989 and was
then forgotten. Also, the analysis made in section 3 showed that the additional vector potential
considered in the composite-fermion approach does not give rise to a Coulomb interaction
but it gives instead a potential of the form 1/r2. The analogous vector potential of a single
electron introduced in this section has led to an adequate proof for the relation between the
filling factors of fermions and composite fermions.
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